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Many classical multivariate statistical methods are mostly based on the 
assumption of multivariate normality. Departures from normality, called 
non-normality, render those statistical methods inaccurate, so it is important 
to know if datasets are normal or non-normal. Especially in medical and life 
sciences, most statistical tests required the assumption of multivariate 
normality have been extensively used. In this study, after summarizing the 
properties of several most widely used multivariate normality tests, we aim 
to compare the power and type I error rates of these tests, which have been 
developed in recent years by many researchers. So, the reader will elucidate 
the differences and the similarities/superiorities and weaknesses of the tests 
in order to make the appropriate choice in their practical applications. For 
this purpose we carried a Monte Carlo simulation study with nominal α level, 
small, medium and large sample size, different dimension and multivariate 
distributions which includes different skewness and kurtosis.  In conclusion, 
the results obtained from the comparative study are given. 
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1. Introduction 

1Many statistical methods for continuous 
variables assume an underlying multivariate 
normal distribution. This methodologies have been 
widely applied in researches. Thus, several formal 
tests were developed for assessing the multivariate 
normality of a set of random variables. Let X=(X1, 
X2,…, Xp) be a vector of p random variables 
distributed as a multivariate normal with mean µ 
and covariance matrix Σ, that is null hypothesis to 

be tested can be written as Η0: X ~ Np(µ, Σ).  
A considerable number of ways for assessing 

multivariate normality can be found in the 
literature. Some recent references are Thulin 
(2014), Hanusz and Tarasińska (2012), Delmail et 
al. (2011), Tenreiro (2011), Cardoso De Oliveira 
and Ferreira (2010), Okamoto and Seo (2010), 
Villasenor Alva and Estrada (2009). It can also be 
seen reviews by Liang et al. (2009), Koizumi et al. 
(2009), Hanusz and Tarasińska (2008), Doornik 
and Hansen (2008), Farrell et al. (2007), Arcones 
(2007), Sürücü (2006), Holgersson (2006), Székely 
and Rizzo (2005), Pudelko (2005), Mecklin and 
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Mundfrom (2005), Dufour et al. (2003), Burdenski 
(2000), Henze and Wagner (1997), Henze (1997), 
Looney (1995), Romeu and Ozturk (1993),  and 
Henze and Zirkler (1990).  

Various multivariate normality tests, which have 
been included in the literature in decades, will be 
discussed in the second part of this study, while in 
the third section the Monte Carlo simulation study 
results, which compares the type I error rates and 
their powers of various multivariate normality tests 
in respect of the different numbers of variables, the 
sizes of samples and significance levels (p, n, α), will 
be revealed. Some results and discussions obtained 
from the comparative study in section 3 are given in 
section 4. Finally, conclusions are given in section 5.   

2. Methods 

Various multivariate normality tests which have 
been included in the literature in decades will be 
summarized in this section of the study. 

2.1. Villasenor-Alva and Gonzalez-Estrada’s 
generalized Shapiro-Wilk (GSW) test  

Villasenor Alva and Estrada (2009) proposed a 
goodness of fit test for multivariate normality 
which is based on Shapiro and Wilk (1965) statistic 
for univariate normality and on an empirical 
standardization of the observations. 
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Assume X1, …, Xn, are independent identically 
distributed random vector in Rp , (p ≥ 1). Let Np (µ, 
Ʃ) denote the p-variate normal density with mean µ 
and covariance matrix Ʃ . Let 0 be the null vector of 
order p and let I be the identity matrix of order p×p. 
To test the null hypothesis H0: X1, …, Xn is a sample 
from Np (µ, Ʃ), where µ and Ʃ are unknown, they 
proposed the test statistic as 

 

𝑊∗ =
1

𝑝
∑ 𝑊𝑍𝑖

𝑝
𝑖=1                  (1) 

 

where 𝑊𝑍𝑖
is Shapiro-Wilk’s statistic evaluated on 

the ith coordinate of  the transformed observations 

Zi1, …, Zin , i=1,…,p. The test based on 𝑊∗rejects H0 at 
a test size α if W* < c α; n, p ,  where  c α; n, p satisfies the 

equation 𝛼 = Ρ{𝑊∗ < 𝑐𝛼;𝑛,𝑝|𝐻0holds}. 

2.2. Kankainen-Taskinen-Oja’s skewness (b1, 
new) test  

Kankainen et al. (2007) obtained generalizations 
of classical Mardia’s measures of skewness and 
kurtosis by using special choices of location and 
scatter estimators. 

If the multivariate measure of skewness is 
constructed so that T1 and C are the sample mean 
vector and sample covariance matrix and T2 is the 
one-step M-estimator that uses T1 and C as initial 
estimators and weight function v1(r) = r2, then the 
resulting skewness measure is easily seen to be 

 

𝑏1,𝑛𝑒𝑤 = 𝑎𝑣𝑒𝑖{𝑟𝑖
2}

−2
𝑎𝑣𝑒𝑖,𝑗{𝑟𝑖

2𝑟𝑗
2𝑟𝑖𝑗}.               (2) 

 
Note that this measure is equivalent to that 

introduced in Móri et al. (1993). The limiting 
distribution of b1,new is that of η1U1,  

 

𝑏1,𝑛𝑒𝑤~
1

𝑛
(

2(𝑝+2)

𝑝2
𝜒

𝑝
2)                                       (3) 

 

where U1 ∼ 𝜒
𝑝
2 and η1 = 2(p+2)/p2. See also Henze 

(1997). 

2.3. Kankainen – Taskinen – Oja’ kurtosis 
(b2,new) test 

If the new kurtosis measure is such that it uses 
the sample covariance matrix as C1 and one-step M-
estimator based on the sample mean vector and 
sample covariance matrix with weight function 
v2(r) = (p+2)−1r2 as C2, then they have obtained the 
generalization of the classical Mardia’s measure of 
kurtosis, that is, 

 
𝑏2,𝑛𝑒𝑤 = (𝑝 + 2)−2𝑎𝑣𝑒𝑖,𝑗{𝑟𝑖

2𝑟𝑗
2𝑟𝑖𝑗

2} − 2(𝑝 +

2)−1𝑎𝑣𝑒𝑖{𝑟𝑖
4} + 𝑝                                                                       (4) 

 
and the limiting distribution of b2,new is that of η2W1 
+ η3W2,  
 

𝑏2,𝑛𝑒𝑤~
1

𝑛
(

4(𝑝+4)

(𝑝+2)2
𝜒𝑝(𝑝+2) 2⁄ −1

2 +
8

𝑝+2
𝜒1

2)                  (5) 

 

where W1 ∼ 𝜒
𝑝(𝑝+1)/2−1
2 and W2 ∼ 𝜒

1
2 (Kankainen et 

al., 2007). 

2.4. Szekely – Rizzo’s 𝜺-statistic (Energy 
Statistic) for testing multivariate normality  

The 𝜀-test of multivariate normality was 
proposed and implemented by Székely and Rizzo 
(2005). The test statistic for d-variate normality is 
given by 

 

𝜀𝑛,𝑝 = 𝑛 (
2

𝑛
∑ Ε‖𝑥𝑗 − Χ‖𝑛

𝑗=1 − Ε‖Χ − Χ′‖ −
1

𝑛2
∑ ∑ ‖𝑥𝑗 − 𝑥𝑘‖𝑛

𝑘=1
𝑛
𝑗=1 )                  (6) 

 
where x1, . . . , xn is the standardized sample, X, Xꞌ are 
iid standard d-variate normal, and ‖·‖ denotes 
Euclidean norm. This new nonparametric test for 
equality of two or more multivariate distributions is 
based on Euclidean distance between sample units. 
Their proposed test wasuniversally consistent 
against all fixed alternatives (not necessarily 
continuous) with finite second moments. The test 

rejects H0 for large values of 𝜀𝑛,𝑝 (Székely and Rizzo, 

2005). 

2.5. Henze-Zirkler (HZ) test  

Henze and Zirkler (1990) test  which is another 
multivariate normal known for good power,  is 
based on the empirical characteristic function. As 
an appealing property of this test have been stated 
that it was a consistent test. The test statistic is 
based on a nonnegative functional D(.,.) that using 
characteristic functions to measure the distance 
between the hypothesized function and the 
empirical function. In order to consistent test 
statistic, the functional D(.,.) must equal zero, 
providing that the data is multivariate normal 
distribution. The non-negative functional is given as 

 

𝐷𝛽(𝑃, 𝑄) = ∫ |�̂�(𝑡) − �̂�(𝑡)|
2

𝜑𝛽(𝑡)𝑑𝑡
ℜ𝑝                               (7) 

 

where �̂�(𝑡)is the characteristic function of the 

proposed distribution and �̂�(𝑡)is the empirical 
characteristic function. The functional consists of a 

weighting function 𝜑
𝛽
(𝑡), where 𝛽 =

1

√2
{

𝑛(2𝑝+1)

4
}

𝑝+4

 

is a smoothing parameter. The test statistic was 
proposed as 
 

𝑇𝛽(𝑝) =
1

𝑛2
∑ ∑ 𝑒𝑥𝑝 (−

𝛽2

2
𝐷𝑖𝑘

2 )𝑛
𝑘=1

𝑛
𝑖=1 − 2(1 +

𝛽2)
−𝑝

2
1

𝑛
∑ 𝑒𝑥𝑝 (−

𝛽2

2(1+𝛽2)
𝐷𝑖𝑖

2)𝑛
𝑖=1 + (1 + 2𝛽2)

−𝑝

2               (8) 

 

where 𝐷𝑖𝑘
2 is the squared Mahalanobis distance 

betwwen two given observations and 𝐷𝑖𝑖
2 is the 

squared Mahalanobis distance from a given 
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observation to the centroid. The test statistic is 
approximately lognormally distributed and this 
distribution is used to find the critical values of the 
test. The test rejects H0 for large values of Tβ(p). 

2.6. Royston’s H multivariate normality test 
(1992) 

Let Χ1, Χ2, . . . , Χ𝑛 be a multivariate random 

sample of size n, where Χ𝑗 ∈ 𝑅𝑝 and if 

Χ(1)𝑘, Χ(2)𝑘, . . . , Χ(𝑛)𝑘 denotes an ordered univariate 

sample for the kth variate, the Shapiro-Wilk’s test 
statistic is 

 

𝑊𝑘 =
[∑ �̃�𝑗Χ(𝑗)𝑘

𝑛
𝑗=1 ]

2

∑ (Χ𝑗𝑘−Χ̅.𝑘)
2𝑛

𝑗=1

                                (9) 

 

where Χ̅.𝑘 = ∑ Χ𝑗𝑘 𝑛⁄𝑛
𝑗=1  is the sample mean, and �̃�𝑗 

the estimator of the normalized best linear 
unbiased coefficients for 𝑗 = 1,2, . . . , 𝑛. Royston 
(1992) suggested a normalizing transformation of 
Wk, obtaining a standard normal score Zk, for k = 1, 
2, . . . , p. Next, the statistic is calculated, 
 

𝜅𝑘 = {Φ−1 [
1

2
Φ(−Ζ𝑘)]}

2
,    for 𝑘 = 1,2, . . . , 𝑝                (10) 

 

where Φ(𝑥) = 1 √2𝜋⁄ ∫ exp −𝑡2 2⁄ 𝑑𝑡
𝑥

−∞
 denotes the 

standard normal cumulative distribution function. 
Finally, the test statistic proposed by Royston 
(1992) was defined by 
 
𝐻 = 𝑣 ∑ 𝜅𝑘

𝑝
𝑘=1                                                              (11) 

 

that is approximately 𝜒
𝑣
2, where ν is referred to as 

the equivalent degrees of freedom, since 𝜅𝑘 are not 
independent. See also an estimate for ν based on the 
method of moments (Royston, 1983; Cardoso De 
Oliveira and Ferreira, 2010). 

3. Simulation study 

A simulation study for the comparison of the 
tests introduced in the previous section is discussed 
in this section. This simulation study is comprised 
of two parts. In the first part of the study, the 
Generalized Shapiro-Wilk test (GSW), which has 
been proposed by Villasenor-Alva and Gonzalez-
Estrada, the Kankaiken-Taskinen-Oja’s skewness 
test (b1,new), the Kankainen-Taskinen-Oja’s kurtosis 
test (b2,new), the Energy test, the Henze-Zirkler (HZ) 
test and the Royston (1992) test statistics are 
compared in terms of type I errors. The second part 
is comprised of the power comparisons of these 
tests. In the simulation study, the iteration number 
has been taken to be 10000, and an R code 
programme has been prepared for each test 
procedure. The results which have been obtained 
have been displayed using tables and figures. For 
the comparison of type I errors and the 

comparisons in respect of the power of the tests, 
the number of variables has been taken to be p = 2, 
3, 5, 10, and the sizes of the samples have been 
taken to be n=20, 50, 100 and 200. Comparisons in 
terms of type I errors and power of tests have been 
performed for nominal α = 0.05. 

In the Monte Carlo simulation study the 
selection of the alternatives to be used against a 
multivariate normal distribution is quite important. 
The purpose here is to define the multivariate 
normality tests which possess the best performance 
in many situations. The first distribution which 
needs to be paid attention to is the multivariate 
normal distribution. There are two reasons for the 
comparison of tests according to normal 
distribution. The first is to check to be sure that the 
algorithms used in the calculation of the test 
statistics has been programmed correctly, while the 
second is used to be sure that the tests reject 
normality only at approximate nominal α levels 
(thus making a type I error). 

The study will consider several normal mixture 
models in order to perform the simulation of the 
sample units derived from two different 
populations as a second distribution. The general 

form of the normal mixture model is �̃�Ν𝑝(𝜇
1
, Σ1) +

(1 − �̃�)Ν𝑝(𝜇
2
, Σ2). The �̃� here is the contamination 

parameter, and specifies the rate of the sample 
obtained from one population. Three contamination 

levels will be reviewed. The first level is �̃�= 0.9 
(90%, 10%), and contains mild contamination. 
Therefore, it is skewed and leptokurtic. The second 

levels is �̃�= 0.788675 (78.8675%, 21.1325%), and 
contains moderate contamination. It is skewed and 

mesokurtic. The third level is �̃�= 0.5 (50%, 50%), 
and contains severe contamination, and is 
symmetrical and platykurtic. The second normal 
mixture model has quite an interesting 
characteristic. The kurtosis of this model is normal, 
but the model has a distribution which is not 
normal. Therefore, it is expected that the kurtosis 
tests of our data set will be of low power. The total 
number of normal mixture models considered in 
the study is 6. In these models, the symbols are 
defined as follows: 

 

μ
1
: Mean vector whose components are zero; 

μ
2
: Mean vector whose components are one; 

I: Unit matrix with a dimension of𝑝 × 𝑝; 

Σ1: Quadratic matrix with a dimension of𝑝 × 𝑝, 
whose diagonal components are 0.2; 

Σ2: Quadratic matrix with a dimension of𝑝 × 𝑝, 
whose diagonal components are 0.5; 

Σ3: Quadratic matrix with a dimension of𝑝 × 𝑝, 
whose diagonal components are 1, and non-
diagonal components are 0.5 (Mecklin and 
Mundfrom, 2000). 
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Thus, the normal mixture models have been 
obtained as below: 

 
1. 0.9Ν𝑝(0, Σ1) + 0.1Ν𝑝(1, Σ2) 

2. 0.788675Ν𝑝(0, Σ1) + 0.211325Ν𝑝(1, Σ2) 

3. 0.5Ν𝑝(0, Σ1) + 0.5Ν𝑝(1, Σ2) 

4. 0.9Ν𝑝(0, Σ3) + 0.1Ν𝑝(1, Ι) 

5. 0.788675Ν𝑝(0, Σ3) + 0.211325Ν𝑝(1, Ι) 

6. 0.5Ν𝑝(0, Σ3) + 0.5Ν𝑝(1, Ι) 
 
The elliptical contoured distributions considered 

in the simulation study are symmetrical 
distributions whose contours possess equal 
intensity. These distributions have an elliptical 
shape. The form of the density function of the 

elliptical distribution is 𝑓(𝑥) = 𝑘𝑝|Σ|−1 2 𝑔[(𝐱 −

μ)′Σ−1(𝐱 − μ)]. Here, x is a random vector, kp is a 
fixed scaler, and g(.) is a non-increasing positive 
function. The elliptical contoured distributions are 
shown with ECp(µ, Σ, g). Multivariate normal 

distribution with 𝑘𝑝 = (2𝜋)−𝑝 2⁄  and 𝑔(𝑡) =

exp (−
𝑡

2
) values are a special case of the elliptical 

contoured distribution. Elliptical distributions are 
symmetrical distributions which have a close 
relationship with normal ones. Therefore, mild 
departures occur from normality. The type II 
Pearson distribution and type VII Pearson 
distribution have been used as an example of 
elliptical distributions. Johnson (1987) has stated 
that type II and type VII Pearson distributions are 
quite suitable for Monte Carlo studies. That is 
because these distributions are easy to generate, 
and they cover many of the elliptical distribution 
family. In our study, the Pearson type II distribution 
has been generated for different shape parameters 
of m = 2, 4, and 10. For m =10 this distribution is 
quite close to multivariate normality. Multivariate t 
and Cauchy distributions are a special case of the 
Pearson type VII family. A multivariate Cauchy 
distribution with v = 1 degrees of freedom and a 
multivariate t distribution with v = 10 degrees of 
freedom are obtained. In our study, the type VII 
Pearson distribution with v = 1 and 10 degrees of 
freedom has been generated. Other than these, a 
multivariate t distribution and a multivariate 
Cauchy distribution with 2 degrees of freedom has 
also been generated. 

Distributions where severe departures are seen 
from normality possess skewness, and are outside 
the elliptical contoured distribution family. The 
multivariate normality tests, which are being 
examined, are expected to display high levels of 
power for these types of distributions. Multivariate 
chi-square and multivariate lognormal distributions 
belonging to this category have been considered in 
our simulation study. Both of these distributions 
exhibit a heavily skewed and non-normal kurtosis. 
Therefore, they are expected to easily determine 
that all of the tests have nonnormality and thus to 

possess high levels of power. The multivariate chi-
square distribution is the extended form of the 
well-known univariate chi-square distribution. The 
chi-square distribution with 1 degrees of freedom 
displays positive skewness. Therefore, the 
multivariate chi-square distribution with 1, 2 and 4 
degrees of freedom has been generated in our 
study. The values of the lognormal distribution are 
inevitably positive and the distribution is positively 
skewed. Therefore, it is expected to display a good 
performance in terms of the determination of 
deviations from multivariate normality of all tests. 
A simple logarithmic transformation will bring the 
data from lognormal distribution to normality. 

Distributions, where the univariate marginal 
distributions are normal but joint distributions are 
not normal, are cases where the departure from 
multivariate normality is theoretically interesting. It 
is not possible to detect this situation using only the 
univariate method, and it is problematic even for 
multivariate methods. One of the multivariate 
distributions which fits this definition is the 
Khintchine’s family of distribution. This distribution 
is expected to clarify the real power of the tests. It is 
expected that the tests do not behave well when 
detecting that the data does not possess 
multivariate normality. 

Another case which is theoretically interesting is 
the multivariate nonnormal distributions which 
possess multivariate normal skewness and kurtosis. 
The family of generalized exponential power 
distribution possesses this feature. Horswell (1990) 
has used two members from this distribution family 
in his own study. 

Apart from these distributions, the symmetrical 
and multivariate Laplace distribution has also been 
used in our simulation study. The multivariate 
Laplace distribution is the multi-dimensionally 
extended form of the univariate, symmetrical 
Laplace distribution. This distribution is 
leptokurtic. Therefore, it is one of the alternative 
distributions which can be used against 
multivariate normal distribution (Farrell et al., 
2007; Székely and Rizzo, 2005). 

The purpose of this study is to examine the 
power of the 6 multivariate normality tests, which 
have been developed in the recent years, in order to 
evaluate multivariate normality via the simulation. 
With this purpose in mind, the Monte Carlo 
simulation has been used. The sizes of the samples 
within the study have been determined as n= 20, 
50, 100, and 200, while the numbers of the 
variables have been determined as p= 2, 3, 5, and 
10. The data sets have been generated from 4 
different sizes of samples and 4 different numbers 
of variables, from 21 different multivariate 
distributions. As a result, the simulations of 
21x4x4=336 cases have been tested with 
significance level of α=0.05. 10000 simulations of 
each combination have been performed. It has been 
chosen to restrict the sample sizes and numbers of 
variables in order to keep the required calculation 
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time for the simulation at reasonable levels and to 
be able to evaluate the small sample sizes for 
multivariate analyses. According to researchers, 
these sample sizes define the most critical cases of 
the multivariate normality assumption (in terms of 
type I and type II errors). The multivariate 
normality tests examined in the study are the 
generalized Shapiro-Wilk test (GSW), which has 
been proposed by Villasenor-Alva and Gonzalez-
Estrada, the Kankainen-Taskinen-Oja’s skewness 
test (b1,new), the Kankainen-Taskinen-Oja’s kurtosis 
test (b2,new), the Energy test, the Henze-Zirkler (HZ) 
test and the Royston (1992) test. The Monte Carlo 
simulation method has been used to determine the 
power of the tests. In this context, several 
multivariate distributions have been considered. 
These distributions are multivariate normal 
distribution, multivariate normal mixture 
distributions (which contain various contamination 
levels, means and variances), the Pearson type II 
and Pearson type VII distributions from the 
elliptical contoured distribution family, the 
multivariate t distribution, the multivariate Cauchy 
distribution and multivariate Laplace distribution, 
from among the symmetrical distributions, the 
multivariate chi-square distribution and 
multivariate lognormal distribution from among the 
heavily skewed distributions, the Khintchine 
distribution and the generalized exponential power 
distribution, from among distributions which, 
according to their features belong to multivariate 
normal distributions, but which are not themselves 
multivariate normal distributions.  

When making a comparison in terms of type I 
errors, empirical type I error values have been 
obtained for the different p, n at nominal α value. 
For each test, the convergence level of the empirical 
type I error to the nominal α value has been 
examined. The rejection rates of the null hypothesis 
for multivariate normality have been taken as 

empirical type I errors, and have been obtained for 
every case and every distribution from every test, 
and presented in tables. Thus, the empirical power 
of each test statistic has been determined.  

4. Results and Discussion 

The empirical type I error rates and powers of 
the generalized Shapiro-Wilk test (GSW), which has 
been proposed by Villasenor-Alva and Gonzalez-
Estrada, the Kankainen-Taskinen-Oja’s skewness 
test (b1,new), the Kankainen-Taskinen-Oja’s kurtosis 
test (b2,new), the Energy test, the Henze-Zirkler (HZ) 
test and the Royston (1992) test, which have been 
selected for the application part of this study in the 
multivariate normality tests, have been compared 
using the Monte Carlo simulation method. The first 
distribution on which the simulation was carried 
out was the multivariate normal distribution. In this 
case, the null hypothesis that the data set has been 
generated from a multivariate normal distribution 
will be tested. It is expected that the empirical 
rejection rates of data sets generated from 
multivariate normal distributions are close to the 
nominal α significance level. A rejection rate 
considerably higher than the α level will mean that 
there is a problem in the type I error rate. The other 
distributions considered in this study will display 
deviations from multivariate normality, which vary 
between mild to severe. Under these circumstances 
it is necessary to assess the null hypothesis as being 
incorrect, and to reject it. Low rejection rates will 
mean, in particular, that there is a problem in the 
type II error rate in the comparisons with the other 
tests, as well a problem in the power of the tests. 

The rates of rejection of the H0 hypothesis in 
connection with tests of the multivariate normal 
distributions have been given as a percentage, as in 
Table 1.  

 
Table 1: Type I error rates of the tests for multivariate normal distribution(MVN) α=5% 

  GSW b1,new b2,new Energy H-Z Royston 
 

p=2 
n=20 4.89 1.67 0.77 4.74 3.66 4.79 
n=50 4.96 3.73 2.37 4.78 4.16 4.91 

n=100 4.55 4.04 3.12 4.44 4.40 4.51 
n=200 5.01 4.52 3.94 4.92 5.15 4.78 

 
p=3 

n=20 4.76 0.94 0.86 4.97 3.37 4.71 
n=50 4.78 3.06 3.00 4.70 4.19 4.89 

n=100 4.70 3.90 4.17 4.65 4.60 4.53 
n=200 4.70 4.45 4.49 4.60 5.19 4.52 

 
p=5 

n=20 4.67 0.12 1.00 4.90 2.79 4.71 
n=50 4.88 2.02 4.16 4.87 4.46 4.81 

n=100 4.68 2.99 5.46 4.61 4.78 4.61 
n=200 4.78 3.99 6.20 4.73 4.91 4.77 

 
p=10 

n=20 4.71 0.00 1.76 4.82 2.81 4.35 
n=50 4.89 5.50 5.02 5.17 4.10 4.64 

n=100 4.73 3.48 8.65 5.03 4.79 4.94 
n=200 4.73 3.48 8.65 5.03 4.79 4.94 

 
When Table 1 is examined, it is observed that 

the rejection rates of the H0 hypothesis in certain 
tests is much lower than the nominal α level, and in 

some it is higher than the nominal α level. The rates 
of rejection of the H0 hypothesis in the Kankainen-
Taskinen-Oja (b1,new) skewness test show the 
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changes between 0.00 to 5.50 for α=0.05. The rates 
of rejection of the H0 hypothesis in the Kankainen-
Taskinen-Oja (b2,new) kurtosis test show the changes 
between 0.77 to 8.65 for α=0.05. The b1,new and b2,new 
tests show especially severe deviations from the 
nominal α significance level at the situation where n 
= 20. The other tests possess rates of rejection at 
nominal α level for the multivariate normal data. 
According to the Henze-Zirkler (HZ) test; 
generalized Shapiro-Wilk (GSW) test, and the 
Energy and Royston tests, even though the nominal 
α level is a little further away from the significance 
level at n = 20, in general all four tests possess 
consistent rejection rates. The results for n=20 and 
p= 2, 3, 5, and 10 related to the multivariate 
distributions are shown in Table 2. It is expected 
that the kurtosis test will be the least sensitive to 
the lognormal distribution. As can be seen from 
Tables 2 and 3, in most cases the test with the 
lowest empirical power is the kurtosis (b2,new) test. 
In addition, the b2,new test displays a lower power 
than the other four tests at n = 20 and 50, and its 
power is seen to rise as the sample size increases. 
The Royston test is more powerful for n = 20, p=2 
and 3, and the GSW test is more powerful for n = 50, 
p = 2. At n = 100 and p=5 and 10 the empirical 
power of all tests are 100%. The Energy test has the 
lowest empirical power at n = 100, p = 2, 3 and n = 
200.  When n = 200, the empirical power of the 
Energy test decreases. 

For multivariate Cauchy distribution, the 
differences between the tests can be seen when n = 
20. There is quite an interesting situation for the 
Energy test. 

While the Energy test possesses the highest 
empirical power when n = 20 and 50, when n = 100, 
p=2, 3 and n = 200, it has the lowest empirical 
power. A consistent increase is seen in the power of 
the b1,new test based on the sample size. Therefore it 
can be said that the b1,new test is sensitive to sample 
size. However, it still displays a lower power than 
the other tests for n = 20 and 50. The GSW test 
possesses the lowest power (44.04 %) at 0.05 
significance levels for n = 20 and p = 10. Something 
else which stands out here is that the b1,new test also 
displays quite low power (56.65%) at 0.05 
significance levels for n = 20 and p = 10. All tests 
possess the maximum empirical power (100%) at 
n=50, 100 and p = 10, n = 100 and p = 5. 

It is expected that the skewness tests in the 
multivariate Laplace distribution display low 
power. Where the sample size is 20, it is observed 
that the empirical power for all tests are low. 
However, when the samples sizes rise, the empirical 
power of the tests increases. Even still, there is no 
situation where all of the tests reach the maximum 
(100%) empirical power levels (in connection with 
n and p). The test with the highest empirical power 
in all cases with this distribution is the Energy test. 

For multivariate t(2) distribution as with the 
multivariate Laplace distribution, the test with the 
lowest power is the b1,new test, and the empirical 

power at the 5% significance level for p = 10, n=20 
is 5.08%. The empirical power of the Energy test 
increases when the sample size changes from n = 20 
to n = 50 and 100, but when the sample size is n = 
200, this has a contrasting effect. Despite the fact 
that the b1,new test has low empirical power, it is 
sensitive to sample size. In the same way, when the 
sample size for the GSW, HZ, Royston and b2,new 
tests increases, an increase is also seen in their 
power. All tests reach 100% power at n=100 and p 
=10. 

The skewness and kurtosis values of the 
generalized exponential power distributions are 
equal to the multivariate normal distribution 
values, but the distribution is not a multivariate 
normal distribution. Most of the tests display low 
power for the generalized exponential power 
distribution. In particular, the b2,new test displays a 
poor power performance. The b2,new test can be said 
to be the worst test for this distribution. Apart from 
this, it is also seen that the b1,new test has the lowest 
power (0.00%) of all the tests for n = 20. Therefore, 
it possesses the worst power performance for n = 
20 and p = 10. However, as the sample size grows, 
an increase in the power is also seen. When n = 20 
and 50 for the b1,new test, a decrease in power is seen 
together with an increase in the number of 
variables. The Royston test and the GSW test can be 
said to display good levels of power for the 
generalized exponential power distribution.  

When Tables 2-5 is examined in order to the 
Khintchine distribution, it can be seen that in 
particular the GSW and Royston tests display quite 
low power. While the empirical power values for 
the GSW test show the changes between 3.06 and 
4.89, the empirical power values of the Royston test 
changes between 4.85 and 6.19. The b1,new test 
possesses the lowest empirical power (0.00%) for n 
= 20 and p = 10. The Energy test can be said to 
display better empirical power than the other tests 
for this distribution. 

As it is known that the multivariate chi-square 
distribution with 1 degrees of freedom is a severely 
skewed distribution with heavy tailed, it is expected 
that the values related to the skewness test will be 
high. When Tables 2-5 is examined, it can be seen 
that the b1,new test is sensitive to sample size. 
However, as the number of variables increases at n 
= 20, the power of the b1,new test decreases. An 
interesting situation seen with the b1,new test is that 
it displays quite low power (4.01 for α=0.05) at p = 
10 and n = 20. The b2,new test displays low power at 
n = 20, while the remaining four tests display quite 
a good power performance.  

All tests reach maximum power (100%) at n = 
100, p =5, 10. The Royston test reaches 100% 
power in almost every case. When the multivariate 
chi-square distribution with 2 degrees of freedom 
in Tables 2-5 is examined, it can be seen that all 
tests are sensitive to sample size. However, when n 
= 20, p = 10, the b1,new test has the lowest power 
(0.00 for α=0.05). 
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Table 2: Empirical power (in percent): (α=5%, n=20, p=2, 3, 5 and 10) 
 p=2 p=3 

Alternative 
Distr. 

GSW b1,new b2,new Energy H-Z Royston GSW b1,new b2,new Energy H-Z Royston 

MV 
Lognormal 

99.24 88.05 60.28 97.18 96.18 99.53 99.9 89.58 67.42 98.70 97.46 100 

MV Cauchy 92.58 88.02 88.64 96.84 96.32 94.78 93.01 93.06 93.6 98.86 98.37 97.12 
MV Laplace 32.23 26.07 19.88 45.85 40.49 36.44 34.30 30.27 25.84 62.52 54.61 44.47 

MV t(2) 61.99 55.07 51.61 65.32 61.92 62.29 62.68 62.13 60.97 76.79 70.77 71.61 
Generalized 
Exp power 

73.08 16.78 2.98 50.02 44.97 77.83 82.17 11.39 3.03 47.84 41.44 89.53 

Khintchine 4.04 4.93 2.97 10.44 7.78 5.12 3.55 6.46 5.55 19.21 13.23 5.15 
MV χ2(1) 99.91 88.14 50.99 99.15 98.5 99.99 99.98 87.85 55.87 99.59 98.98 100 
MV χ2(2) 95.35 62.74 28.63 85.81 82.24 96.68 98.59 60.74 31.46 88.95 83.85 99.50 
MV χ2(4) 71.26 36.51 15.22 55.43 50.10 100 82.06 31.60 15.91 58.62 48.62 100 

Pearson II 
(2) 

5.85 0.21 0.00 4.25 3.54 5.37 5.72 0.12 0.18 2.81 2.77 5.55 

Pearson II 
(4) 

3.51 0.56 0.19 3.46 2.84 3.19 2.93 0.23 0.32 2.95 2.43 2.81 

Pearson II 
(10) 

3.66 1.02 0.55 4.25 3.09 3.36 3.50 0.50 0.54 3.73 2.58 3.34 

Pearson VII 
(1) 

97.33 87.9 87.85 97.09 96.42 97.79 99.49 93.02 92.68 98.96 98.55 99.73 

Pearson VII 
(10) 

11.55 5.81 3.83 10.02 7.46 12.04 12.62 4.14 3.80 10.52 6.40 13.59 

MVN Mix I 
(0.9) 

19.75 23.13 13.30 28.02 23.64 31.14 16.05 21.46 16.53 34.20 24.07 37.07 

MVN Mix I 
(0.788675) 

23.34 23.14 9.07 36.72 32.97 36.94 21.18 22.80 12.40 44.50 35.16 46.03 

MVN Mix I 
(0.5) 

14.90 5.59 2.64 19.31 16.71 16.94 15.23 5.84 5.00 26.09 21.29 20.55 

MVN Mix II 
(0.9) 

5.73 2.02 2.03 5.37 4.20 4.97 6.02 1.73 4.15 5.97 3.76 5.30 

MVN Mix II 
(0. 788675) 

5.59 1.93 2.16 5.47 4.10 4.65 6.35 1.79 4.30 6.59 4.16 5.00 

MVN Mix II 
(0.5) 

4.73 1.72 1.35 5.42 4.01 4.29 5.65 1.37 2.97 6.51 4.12 4.42 

 p=5 p=10 
Alternative 

Distr. 
GSW b1,new b2,new Energy H-Z Royston GSW b1,new b2,new Energy H-Z Royston 

MV 
Lognormal 

99.99 85.11 72.68 99.29 97.4 100 100 9.46 59.9 97.75 80.97 100 

MV Cauchy 89.58 95.61 96.49 99.74 99.36 99.06 44.04 56.65 93.94 99.91 97.83 99.71 
MV Laplace 33.99 29.13 30.22 82.33 71.98 56.45 19.63 3.25 27.77 93.81 77.47 73.72 

MV t(2) 55.08 62.03 69.14 88.33 77.39 82.78 21.93 5.08 56.45 93.58 62.65 92.45 
Generalized 
Exp power 

89.37 2.62 2.60 37.13 28.50 98.06 89.26 0.00 2.38 16.30 9.69 99.99 

Khintchine 3.06 5.82 8.23 42.40 27.95 4.85 3.19 0.15 12.63 72.00 40.69 5.31 
MV χ2(1) 100 79.04 56.54 99.44 98.36 100 100 4.01 39.19 96.11 98.87 100 
MV χ2(2) 99.67 41.99 29.01 88.78 78.05 99.98 99.88 0.00 15.49 72.38 37.68 100 
MV χ2(4) 90.72 14.22 13.34 57.29 38.92 100 95.23 0.00 6.86 38.16 14.33 100 

Pearson II 
(2) 

5.78 0.00 0.33 1.79 2.02 6.63 4.68 0.00 1.07 1.82 2.41 7.60 

Pearson II 
(4) 

3.24 0.00 0.34 2.54 1.75 2.85 2.76 0.00 1.25 3.06 2.61 2.28 

Pearson II 
(10) 

3.57 0.00 0.68 3.86 2.30 3.36 3.11 0.00 1.51 3.75 2.69 2.69 

Pearson VII 
(1) 

99.93 95.30 96.31 99.78 99.34 99.98 100 54.93 96.30 99.88 97.40 100 

Pearson VII 
(10) 

14.56 0.79 2.76 10.46 4.81 16.54 16.65 0.00 2.69 10.05 3.68 21.64 

MVN Mix I 
(0.9) 

10.91 9.55 19.29 37.15 18.84 48.99 5.37 0.00 12.04 26.41 6.84 66.81 

MVN Mix I 
(0.788675) 

14.73 12.75 16.41 49.05 30.31 60.82 7.35 0.00 20.24 38.90 11.58 82.26 

MVN Mix I 
(0.5) 

14.25 3.94 9.41 34.77 25.74 27.58 8.52 0.00 25.90 39.00 17.33 41.71 

MVN Mix II 
(0.9) 

5.90 0.31 9.47 7.26 3.99 5.58 5.38 0.00 25.63 7.82 3.42 6.30 

MVN Mix II 
(0. 788675) 

6.75 0.47 9.24 8.32 4.52 5.09 5.80 0.00 25.79 10.55 3.88 5.64 

MVN Mix II 
(0.5) 

6.34 0.30 5.44 8.54 4.59 4.51 5.68 0.00 17.34 11.89 4.68 4.82 
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Table 3. Empirical power (in percent): (α=5%, n=50, p=2, 3, 5, and 10) 
 p=2 p=3 

Alternative 
Distr. 

GSW b1,new b2,new Energy H-Z Royston GSW b1,new b2,new Energy H-Z Royston 

MV 
Lognormal 

100 100 97.75 100 100 99.96 100 100 99.3 100 100 100 

MV Cauchy 99.97 98.46 99.99 100 100 99.98 99.99 99.77 100 100 100 99.99 
MV Laplace 69.89 50.05 70.48 84.52 82.47 71.28 78.18 63.14 86.21 96.18 95.51 82.25 

MV t(2) 95.54 85.08 94.64 94.87 93.54 93.03 97.85 92.85 98.50 98.69 97.97 97.23 
Generalized 
Exp power 

99.99 76.68 7.11 97.33 95.99 100 100 74.03 8.05 98.00 96.71 100 

Khintchine 4.53 10.91 11.85 15.84 14.06 4.95 4.14 20.53 27.35 39.34 34.06 4.93 
MV χ2(1) 100 99.99 94.93 100 100 100 100 100 97.89 100 100 100 
MV χ2(2) 100 99.74 77.41 100 99.96 100 100 99.84 84.69 100 99.99 100 
MV χ2(4) 99.64 93.52 51.41 96.47 93.87 100 100 94.67 57.83 98.57 95.71 100 

Pearson II 
(2) 

22.55 0.00 0.75 10.77 14.56 21.21 28.58 0.11 0.13 7.57 13.17 26.73 

Pearson II 
(4) 

5.42 0.41 0.12 4.59 5.42 4.99 5.34 0.45 0.18 3.54 5.09 4.71 

Pearson II 
(10) 

3.68 1.51 0.73 4.47 4.48 3.66 3.66 1.46 1.21 3.85 4.20 3.32 

Pearson VII 
(1) 

99.99 98.33 99.97 99.99 99.99 99.99 100 99.65 100 100 100 100 

Pearson VII 
(10) 

20.76 15.32 17.26 14.52 11.25 20.91 24.39 15.12 20.53 16.21 10.34 25.33 

MVN Mix I 
(0.9) 

50.07 71.38 52.22 61.71 52.25 65.12 48.90 82.73 69.19 77.32 61.72 77.20 

MVN Mix I 
(0.788675) 

59.76 80.08 33.55 82.01 76.55 79.69 57.97 89.08 46.99 92.82 86.52 90.11 

MVN Mix I 
(0.5) 

38.45 26.51 8.83 53.91 53.20 45.8 39.79 37.17 17.95 70.22 68.61 56.58 

MVN Mix II 
(0.9) 

6.82 5.13 6.44 5.86 5.17 5.61 8.19 6.35 13.08 6.87 5.14 5.60 

MVN Mix II 
(0. 788675) 

7.32 5.40 6.69 6.69 5.77 5.73 9.28 6.39 13.68 8.16 6.36 5.20 

MVN Mix II 
(0.5) 

5.13 5.40 4.64 6.80 6.06 4.40 7.46 6.39 8.81 9.42 7.85 4.41 

 p=5 p=10 
Alternative 

Distr. 
GSW b1,new b2,new Energy H-Z Royston GSW b1,new b2,new Energy H-Z Royston 

MV 
Lognormal 

100 100 99.87 100 100 100 100 100 99.98 100 100 100 

MV Cauchy 100 100 100 100 100 100 100 100 100 100 100 100 
MV Laplace 86.56 80.92 96.99 99.82 99.71 92.79 90.53 95.88 99.92 100 100 98.61 

MV t(2) 98.93 98.40 99.84 99.92 99.76 99.31 98.99 99.92 100 100 99.98 99.95 
Generalized 
Exp power 

100 63.46 9.52 97.44 93.60 100 100 26.23 10.37 85.47 65.24 100 

Khintchine 3.58 39.97 60.31 83.81 78.28 5.45 3.46 74.81 95.33 99.79 99.03 6.09 
MV χ2(1) 100 100 99.21 100 100 100 100 100 99.74 100 100 100 
MV χ2(2) 100 99.87 90.53 100 100 100 100 99.17 94.07 100 99.71 100 
MV χ2(4) 100 94.19 65.59 99.33 94.92 100 100 84.46 71.46 99.12 81.04 100 

Pearson II 
(2) 

38.52 0.00 0.27 3.14 11.00 39.18 50.09 0.00 0.54 0.82 7.53 64.4 

Pearson II 
(4) 

5.53 0.33 0.45 2.43 5.31 4.84 5.45 0.00 1.18 1.10 4.80 5.38 

Pearson II 
(10) 

3.1 0.98 1.75 3.29 4.25 2.79 3.03 0.23 2.47 2.68 4.26 2.46 

Pearson VII 
(1) 

100 99.98 100 100 100 100 100 100 100 100 100 100 

Pearson VII 
(10) 

30.40 13.54 23.19 18.81 10.02 32.7 41.23 6.23 25.1 21.21 7.47 47.33 

MVN Mix I 
(0.9) 

42.15 90.85 85.39 89.17 64.37 88.44 25.17 90.17 95.68 93.86 37.02 96.4 

MVN Mix I 
(0.788675) 

51.90 94.79 68.78 97.72 89.92 97.68 36.99 97.13 94.23 99.27 70.42 99.9 

MVN Mix I 
(0.5) 

41.28 58.88 35.99 87.33 83.82 71.89 34.91 84.95 74.02 98.21 88.19 88.98 

MVN Mix II 
(0.9) 

9.48 7.53 29.07 10.55 6.18 6.50 8.31 5.31 65.25 17.15 5.69 7.22 

MVN Mix II 
(0. 788675) 

11.54 9.27 29.85 14.47 8.08 6.24 11.91 10.49 70.15 29.93 8.34 7.09 

MVN Mix II 
(0.5) 

9.63 9.27 18.37 15.67 10.52 4.64 11.84 10.49 47.29 35.67 13.07 4.27 
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The b2,new test has less power than the other 
tests. All tests reach maximum power (100%) at n = 
200, p= 5. The test with the best performance for 
the distribution is the Royston test. According to the 
results related to the multivariate chi-square 
distribution with 4 degrees of freedom, there is no 
situation where all of the tests which have been 
considered reach maximum. Increases are seen in 
the empirical power of all tests as the sample size 
increases. The b2,new test is more powerful than the 
other tests. When n = 20, p = 10, the b1,new test has 
the lowest power performance (0.00%). As the 
number of variables increases at n = 20, an increase 
is seen in the power of the GSW and Royston tests. 
The best test for this distribution is the Royston 
test. 

The type II Pearson distribution, for which the 
shape parameter is m = 2, is an elliptical contoured 
distribution with a short tailed. The power levels of 
all tests other than the skewness test (b1,new) display 
a change according to the sample size. The b1,new test 
has the worst power performance. Apart from this 
when p = 10 the power at all sample sizes is 0.00. 
The b2,new test does not display good performance 
either, while the power levels of the GSW and 
Royston tests show a rapid increase based on the 
sample size. Both the GSW and Royston tests have a 
power of 100% at p=5, 10 and n = 200. When the 
results related to the type II Pearson distribution, 
for which the shape parameter is m = 4, are 
examined in Tables 2-5, as with the previous 
distribution, the test with the worst power 
performance is the b1,new test. The power levels of 
the GSW and Royston tests display a lower increase 
for the type II Pearson distribution with the m = 4 
shape parameter. The HZ and Energy tests display 
lower power than these two tests. None of the tests 
are able to reach maximum power (100%). When 
the results related to the type II Pearson 
distribution, for which the shape parameter is m = 
10, are considered in the tables, the power levels of 
all tests decrease based on the increase in the shape 
parameter m. The test with the highest power when 
m = 10 is the HZ test, but this power level only has 
the low value of 6.55%. For n = 20 and 50, the 
power levels of all tests remain beneath the 
nominal α significance level. 

For the results related to the type VII Pearson 
distribution with 1 degrees freedom in Tables 2-5,  
it can be said that the b1,new test is less powerful 
than the other tests when n = 20 and 50. An 
increase is seen in the power levels of the GSW, 
b2,new, HZ and Royston tests based on the sample 
size and number of variables. While the Energy test 
displays consistent power levels at n=20, 50 and n = 
100, p =5, 10, it has quite low power at n = 100, p = 
2, 3 and n=200. An important decrease is seen in 
the power levels of the Energy test, in particular 
when n = 200. All tests reach maximum power at n 
= 50, p =10 and n = 100, p = 5, 10. The GSW and 
Royston tests have the best power performance for 
this distribution. When the results related to the 

type VII Pearson distribution with 10 degrees of 
freedom are examined, a decrease in the power 
levels of the tests has been observed together with 
the increase in degrees of freedom. There is no 
situation when all of the tests reach maximum 
power. The b1,new test has the lowest empirical 
power (0.00%) at n=20, p=10. The power of all tests 
display increases based on sample size. As the 
number of variables rises for all sample sizes, the 
power of the GSW and Royston tests increases. 
However, when n = 20, the power of the other four 
tests decreases as the number of variables 
increases. 

According to the results related to the type I 
multivariate normal mixture distribution with three 
different contamination levels (0.9-0.1, 0.788675-
0.211325, 0.5-0.5) in Tables 2-5, while the power of 
the tests increases when the contamination 
parameter falls from 0.9 to 0788675, when the 
contamination parameter falls from 0.788675 to 
0.5, the power of the tests decreases. At all three 
contamination levels, the b1,new test has the lowest 
power (0.00%) at n=20 and p = 10. It can be seen 
that the power levels of the tests increase at 
different sample sizes and numbers of variables, as 
the sample size increases, at the first contamination 
level (0.9-0.1). When n = 20, the power of the b1,new 
test decreases based on an increase in the number 
of variables. When p = 5 and 10 lower power values 
are obtained for the HZ test. The power of the 
Royston test increases together with an increase in 
the number of variables, while the power of the 
GSW test decreases. Therefore, the test with the 
best power performance at the first contamination 
level is the Royston test. It can be seen that the 
power of the tests increases at different sample 
sizes and numbers of variables, as the sample size 
increases, for the second contamination level 
(0.788675-0.211325). As with the previous 
distribution, when n = 20, the power of the b1,new 
test decreases based on an increase in the number 
of variables. When the number of variables 
increases, an increase is seen in the power of the 
b1,new, b2,new, Energy and Royston tests, while the 
power of the GSW test decreases. Additionally, 
when p = 5 and 10 lower power values are obtained 
for the HZ test. As a result, it can be said that the 
Royston test displays a more powerful performance 
with the multivariate normal mixture distribution 
at the second contamination level. As the sample 
size increases, it can be seen that there is also an 
increase in the power of the tests. When the 
number of variables increases, the power levels of 
the b2,new, Energy, HZ and Royston tests also 
increase. In general, it can be said that the Royston 
test displays a more powerful performance with the 
multivariate normal mixture distribution at the 
third contamination level. 

According to the results related to the type II 
multivariate normal mixture distribution with three 
different contamination levels (0.9-0.1, 0.788675-
0.211325, 0.5-0.5) are examined, it can be seen that 
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all tests possess quite low power levels for all three contamination levels. 
 

Table 4. Empirical power (in percent): (α=5%, n=100, p=2, 3, 5, and 10) 
 p=2 p=3 

Alternative 
Distr. 

GSW b1,new b2,new Energy H-Z Royston GSW b1,new b2,new Energy H-Z Royston 

MV Lognormal 100 100 99.97 98.43 100 100 100 100 100 98.61 100 100 
MV Cauchy 100 99.6 100 52.91 100 100 100 99.96 100 63.67 100 100 
MV Laplace 93.92 59.78 96.16 98.85 98.66 94.26 97.94 75.62 99.56 99.96 99.97 98.28 

MV t(2) 99.91 94.13 99.93 91.37 99.77 99.71 100 98.27 100 91.17 99.99 99.94 
Generalized 
Exp power 

100 99.32 8.54 99.99 99.99 100 100 99.54 10.10 100 100 100 

Khintchine 4.89 14.93 22.80 27.11 24.87 5.37 4.52 28.58 55.69 69.65 67.04 5.29 
MV χ2(1) 100 100 99.96 100 100 100 100 100 100 100 100 100 
MV χ2(2) 100 100 96.88 100 100 100 100 100 98.94 100 100 100 
MV χ2(4) 100 99.99 80.57 100 99.95 100 100 99.99 87.31 100 99.98 100 

Pearson II (2) 70.58 0.00 29.63 30.41 37..29 68.19 84.75 0.00 19.11 25.44 36.31 82.55 
Pearson II (4) 10.75 0.45 2.88 7.78 10.29 9.92 13.01 0.41 1.26 6.37 9.95 11.39 

Pearson II (10) 3.46 1.51 0.91 4.73 5.32 3.37 3.54 1.47 1.08 4.39 5.09 3.33 
Pearson VII (1) 100 99.59 100 53.79 100 100 100 99.99 100 63.71 100 100 

Pearson VII 
(10) 

32.58 22.34 33.36 20.45 15.31 33.04 39.21 23.24 38.66 24.00 15.92 40.29 

MVN Mix I (0.9) 81.14 94.77 85.52 88.30 78.16 90.50 81.23 98.56 95.46 96.65 88.18 96.47 
MVN Mix I 
(0.788675) 

89.91 99.24 60.73 98.76 97.24 98.33 90.17 99.92 76.90 99.95 99.55 99.77 

MVN Mix I (0.5) 70.84 61.84 18.37 89.70 87.99 81.8 74.42 79.43 36.47 97.67 97.31 91.09 
MVN Mix II 

(0.9) 
8.57 6.92 10.90 6.20 5.48 6.44 9.71 8.92 20.10 7.86 6.22 6.29 

MVN Mix II (0. 
788675) 

9.96 7.02 11.83 7.29 6.37 5.58 13.36 10.32 23.29 11.40 8.05 6.37 

MVN Mix II 
(0.5) 

6.44 7.02 7.54 9.26 7.89 4.09 9.59 10.32 14.55 15.73 12.14 4.34 

 p=5 p=10 
Alternative 

Distr. 
GSW b1,new b2,new Energy H-Z Royston GSW b1,new b2,new Energy H-Z Royston 

MV Lognormal 100 100 100 100 100 100 100 100 100 100 100 100 
MV Cauchy 100 100 100 100 100 100 100 100 100 100 100 100 
MV Laplace 99.72 91.19 100 100 100 99.79 100 99.58 100 100 100 100 

MV t(2) 100 99.83 100 99.99 100 100 100 100 100 100 100 100 
Generalized 
Exp power 

100 99.18 12.39 100 99.99 100 100 95.49 15.33 99.99 99.21 100 

Khintchine 4.15 57.55 94.96 99.02 98.86 5.57 3.80 93.56 100 100 99.99 6.19 
MV χ2(1) 100 100 100 100 100 100 100 100 100 100 100 100 
MV χ2(2) 100 100 99.73 100 100 100 100 100 99.93 100 100 100 
MV χ2(4) 100 100 92.62 100 99.99 100 100 99.98 96.36 100 99.9 100 

Pearson II (2) 96.33 0.00 2.39 13.16 31.12 96.03 99.77 0.00 0.00 1.79 20.74 99.96 
Pearson II (4) 16.43 0.27 0.55 4.02 8.88 14.66 24.11 0.17 0.67 1.46 8.20 22.34 

Pearson II (10) 3.38 1.19 1.62 3.76 5.26 2.98 3.23 0.51 2.56 2.49 4.92 2.92 
Pearson VII (1) 100 100 100 100 100 100 100 100 100 100 100 100 

Pearson VII 
(10) 

50.89 24.33 44.66 28.63 15.31 52.85 69.48 20.64 51.8 34.57 11.54 73.16 

MVN Mix I (0.9) 79.38 99.81 99.50 99.47 92.88 98.97 68.90 99.98 100 99.95 83.89 99.86 
MVN Mix I 
(0.788675) 

89.20 100 94.01 100 99.92 100 84.08 100 99.94 100 99.27 100 

MVN Mix I (0.5) 77.39 96.73 64.86 99.88 99.63 97.75 76.31 100 96.34 100 99.96 99.82 
MVN Mix II 

(0.9) 
11.86 14.36 43.96 12.82 7.40 6.72 13.66 23.91 86.84 28.15 8.14 8.05 

MVN Mix II (0. 
788675) 

17.64 20.28 48.79 22.45 11.42 6.80 21.53 44.24 91.54 55.80 15.60 7.61 

MVN Mix II 
(0.5) 

15.36 20.28 30.05 29.20 17.91 4.27 21.29 44.24 73.50 69.43 30.73 4.08 

 
While the power of the tests increases when the 

contamination parameter falls from 0.9 to 0788675, 
when the contamination parameter falls from 
0.788675 to 0.5, the power of the tests decreases. At 
all three contamination levels, the b1,new test has the 
lowest power (0.00%) at n=20 and p = 10. It can be 
seen that the power of the tests increases as the 
sample size increases. As a result, it can be said that 
the test with the best power performance at the 

first contamination level for the multivariate 
normal mixture distribution is the GSW test.  

It can be seen that the power of the tests 
increases at different sample sizes and numbers of 
variables, as the sample size increases, at the 
second contamination level (0.788675-0.211325). 
The Energy test has better power than the other 
tests at p = 3, and 5. At p = 10, the b2,new test displays 
the highest empirical power. As the power of the 
tests increase at different sample sizes and 
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numbers of variables, as the sample size increases, 
at the third contamination level (0.5-0.5), it is 

observed that there are increases in the power 
levels of the GSW, b1,new, b2,new, Energy and HZ tests. 

 
Table 5. Empirical power (in percent): (α=5%, n=200, p=2, 3, 5 and 10) 

 p=2 p=3 
Alternative Distr. GSW b1,new b2,new Energy H-Z Royston GSW b1,new b2,new Energy H-Z Royston 

MV Lognormal 100 100 100 85.05 100 100 100 100 100 90.66 100 100 
MV Cauchy 100 99.9 100 51.13 100 100 100 99.99 100 34.36 100 100 
MV Laplace 99.90 67.38 99.96 99.98 100 99.89 100 81.75 100 99.95 100 99.99 

MV t(2) 100 98.01 100 78.20 100 100 100 99.64 100 79.02 100 100 
Generalized 
Exp power 

100 100 11.25 100 100 100 100 100 12.21 100 100 100 

Khintchine 4.75 17.01 41.27 51.24 49.81 4.92 4.67 34.07 87.11 96.17 95.90 5.04 
MV χ2(1) 100 100 100 98.31 100 100 100 100 100 98.85 100 100 
MV χ2(2) 100 100 99.95 99.86 100 100 100 100 100 99.87 100 100 
MV χ2(4) 100 100 97.38 100 100 100 100 100 98.91 99.99 100 100 

Pearson II (2) 99.69 0.14 93.39 74.45 76.34 99.49 99.99 0.00 88.86 73.98 77.30 100 
Pearson II (4) 33.26 0.39 24.15 16.59 18.73 30.75 44.32 0.35 17.07 14.70 19.16 40.18 

Pearson II (10) 5.25 1.53 2.46 5.45 6.20 4.91 5.33 1.53 1.77 5.03 6.55 5.04 
Pearson VII (1) 100 99.95 100 50.66 100 100 100 100 100 35.50 100 100 

Pearson VII 
(10) 

51.97 26.95 55.52 31.14 22.90 52.03 62.80 29.90 62.73 37.23 25.03 63.09 

MVN Mix I 
(0.9) 

98.01 99.85 99.04 99.15 96.45 99.37 98.58 99.99 99.94 99.97 99.21 99.92 

MVN Mix I 
(0.788675) 

99.76 100 88.19 100 99.97 100 99.75 100 96.47 100 100 100 

MVN Mix I 
(0.5) 

96.35 94.68 38.80 99.87 99.67 98.99 97.57 99.26 68.18 100 99.99 99.91 

MVN Mix II 
(0.9) 

10.99 8.59 15.32 7.15 6.28 7.00 14.31 12.29 28.69 10.14 7.30 7.15 

MVN Mix II (0. 
788675) 

14.64 8.99 17.59 9.90 7.90 6.85 21.82 15.05 35.31 17.30 11.03 6.95 

MVN Mix II 
(0.5) 

8.63 8.99 11.14 15.25 12.19 3.96 16.04 15.05 21.75 31.50 21.13 3.78 

 p=5 p=10 
Alternative Distr. GSW b1,new b2,new Energy H-Z Royston GSW b1,new b2,new Energy H-Z Royston 

MV Lognormal 100 100 100 82.76 100 100 100 100 100 96.43 100 100 
MV Cauchy 100 100 100 15.82 100 100 100 100 100 21.08 100 100 
MV Laplace 100 95.17 100 100 100 100 100 99.86 100 100 100 100 

MV t(2) 100 99.99 100 51.80 100 100 100 100 100 79.48 100 100 
Generalized 
Exp power 

100 100 14.24 100 100 100 100 100 18.07 100 100 100 

Khintchine 4.69 65.96 99.92 100 100 5.63 3.79 97.19 100 100 100 6.19 
MV χ2(1) 100 100 100 99.72 100 100 100 100 100 99.70 100 100 
MV χ2(2) 100 100 100 100 100 100 100 100 100 99.98 100 100 
MV χ2(4) 100 100 99.74 100 100 100 100 100 99.95 99.99 100 100 

Pearson II (2) 100 0.00 66.38 60.50 72.12 100 100 0.00 0.90 18.35 54.65 100 
Pearson II (4) 62.07 0.21 5.59 10.64 18.22 56.13 86.56 0.18 0.41 3.75 14.63 82.89 

Pearson II (10) 5.92 1.37 1.41 3.97 6.05 5.37 6.22 0.77 1.72 2.71 5.77 5.14 
Pearson VII (1) 100 100 100 16.42 100 100 100 100 100 21.59 100 100 

Pearson VII 
(10) 

77.98 32.38 69.19 44.02 24.21 78.55 93.97 34.09 77.43 53.08 20.10 94.63 

MVN Mix I 
(0.9) 

98.62 100 100 100 99.83 100 97.83 100 100 100 99.51 100 

MVN Mix I 
(0.788675) 

99.82 100 99.85 100 100 100 99.78 100 100 100 100 100 

MVN Mix I 
(0.5) 

98.58 100 93.03 100 100 100 98.98 100 99.99 100 100 100 

MVN Mix II 
(0.9) 

18.11 22.41 59.77 18.30 8.70 7.99 23.48 48.32 96.12 45.78 10.93 9.43 

MVN Mix II (0. 
788675) 

30.92 34.40 67.92 38.80 17.79 7.74 41.21 80.51 98.78 85.29 30.15 10.03 

MVN Mix II 
(0.5) 

27.56 34.40 47.32 61.20 35.50 3.76 42.98 80.51 93.09 97.34 64.49 3.91 

 
It is seen that the power levels of the b1,new test 

decrease when the number of variables increases for 
n = 20, the power of the b1,new test increases together 
with the number of variables for n = 50, 100, 200. 
The Energy test provides better power results for 
the multivariate normal mixture distribution at the 
third contamination level. 

5. Conclusions  

In this study, the generalized Shapiro-Wilk test 
(GSW), which has been proposed by Villasenor-Alva 
and Gonzalez-Estrada, the Kankaiken-Taskinen-Oja’s 
skewness test (b1,new), the Kankainen-Taskinen-Oja’s 
kurtosis test (b2,new), the Energy test, the Henze-
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Zirkler (HZ) test and the Royston (1992) test have 
been introduced for testing of the null hypothesis in 
connection with multivariate normality, and 
comparisons have been made concerning the 
empirical type I errors rates of these tests and their 
power levels. In the comparisons concerning the 
type I errors for n=20, the b1,new and b2,new tests 
display quite poor results, while the other four tests 
display better results, close to the nominal α level. As 
the sample size increases an improvement in the 
b1,new and b2,new tests is seen. 

In general, in all of the comparisons made 
concerning the power of the tests, the b1,new test gave 
the worst results. The b1,new test particularly 
possesses bad performance for symmetrical and 
leptokurtic distributions. Therefore, it will be more 
appropriate to use alternative tests instead of these 
ones. The b2,new test has given bad results for heavily 
skewed distributions, but good results for the type II 
multivariate normal mixture distribution. While the 
Energy test has poor performance in the 
symmetrical and platykurtic distributions, it does 
display better power performance for symmetrical 
and leptokurtic distributions. The GSW and Royston 
tests have provided good results for platykurtic 
tests. 

As a result, the Energy and Royston tests have 
more powerful for type I normal mixture 
distributions, while the b2,new test has more powerful 
for type II normal mixture distributions. It has been 
observed that the GSW and Royston tests are more 
powerful for elliptical, skewed and generalized 
exponential power distributions. The Royston test 
has been found to be more powerful for symmetrical 
distributions, while the Energy test has been found 
to be empirically more powerful for the Khintchine 
distribution. 
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